Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Theor Biol ; : 111376, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2229159

ABSTRACT

SARS-CoV-2 (SARS2) regularly mutates resulting to variants of concern (VOC) which have higher virulence and transmissibility rates while concurrently evading available therapeutic strategies. This highlights the importance of amino acid mutations occurring in the SARS2 spike protein structure since it may affect virus biology. However, this was never fully elucidated. Here, network analysis was performed based on the COVID-19 genomic epidemiology network between December, 2019-July, 2021. Representative SARS2 VOC spike protein models were generated and quality checked, protein model superimposition was done, and common contact based on contact mapping was established. Throughout this study, we found that: (1) certain individual variant-specific amino acid mutations can affect the spike protein structural pattern; (2) certain individual variant-specific amino acid mutations had no affect on the spike protein structural pattern; and (3) certain combination of variant-specific amino acids are putatively epistatic mutations that can potentially influence the VOC spike protein structural pattern. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".

2.
J Mol Graph Model ; 119: 108396, 2023 03.
Article in English | MEDLINE | ID: covidwho-2159305

ABSTRACT

Autophagy is an important cellular process that triggers a coordinated action involving multiple individual proteins and protein complexes while SARS-CoV-2 (SARS2) was found to both hinder autophagy to evade host defense and utilize autophagy for viral replication. Interestingly, the possible significant stages of the autophagy biochemical network in relation to the corresponding autophagy-targeted SARS2 proteins from the different variants of concern (VOC) were never established. In this study, we performed the following: autophagy biochemical network design and centrality analyses; generated autophagy-targeted SARS2 protein models; and superimposed protein models for structural comparison. We identified 2 significant biochemical pathways (one starts from the ULK complex and the other starts from the PI3P complex) within the autophagy biochemical network. Similarly, we determined that the autophagy-targeted SARS2 proteins (Nsp15, M, ORF7a, ORF3a, and E) are structurally conserved throughout the different SARS2 VOC suggesting that the function of each protein is preserved during SARS2 evolution. Interestingly, among the autophagy-targeted SARS2 proteins, the M protein coincides with the 2 significant biochemical pathways we identified within the autophagy biochemical network. In this regard, we propose that the SARS2 M protein is the main determinant that would influence autophagy outcome in regard to SARS2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Autophagy , Virus Replication
3.
Front Genet ; 12: 773726, 2021.
Article in English | MEDLINE | ID: covidwho-1505833

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic has been attributed to SARS-CoV-2 (SARS2) and, consequently, SARS2 has evolved into multiple SARS2 variants driving subsequent waves of infections. In particular, variants of concern (VOC) were identified to have both increased transmissibility and virulence ascribable to mutational changes occurring within the spike protein resulting to modifications in the protein structural orientation which in-turn may affect viral pathogenesis. However, this was never fully elucidated. Here, we generated spike models of endemic HCoVs (HCoV 229E, HCoV OC43, HCoV NL63, HCoV HKU1, SARS CoV, MERS CoV), original SARS2, and VOC (alpha, beta, gamma, delta). Model quality check, structural superimposition, and structural comparison based on RMSD values, TM scores, and contact mapping were all performed. We found that: 1) structural comparison between the original SARS2 and VOC whole spike protein model have minor structural differences (TM > 0.98); 2) the whole VOC spike models putatively have higher structural similarity (TM > 0.70) to spike models from endemic HCoVs coming from the same phylogenetic cluster; 3) original SARS2 S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM = 1.0) and S1-NTD (TM > 0.96); and 4) endemic HCoV S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM > 0.70) and S1-NTD (TM > 0.70) models belonging to the same phylogenetic cluster. Overall, we propose that structural similarities (possibly ascribable to similar conformational epitopes) may help determine immune cross-reactivity, whereas, structural differences (possibly associated with varying conformational epitopes) may lead to viral infection (either reinfection or breakthrough infection).

4.
Front Med (Lausanne) ; 8: 613412, 2021.
Article in English | MEDLINE | ID: covidwho-1154225

ABSTRACT

The SARS-CoV-2 (SARS2) is the cause of the coronavirus disease 2019 (COVID-19) pandemic. One unique structural feature of the SARS2 spike protein is the presence of a furin-like cleavage site (FLC) which is associated with both viral pathogenesis and host tropism. Specifically, SARS2 spike protein binds to the host ACE-2 receptor which in-turn is cleaved by furin proteases at the FLC site, suggesting that SARS2 FLC structural variations may have an impact on viral infectivity. However, this has not yet been fully elucidated. This study designed and analyzed a COVID-19 genomic epidemiology network for December 2019 to July 2020, and subsequently generated and analyzed representative SARS2 spike protein models from significant node clusters within the network. To distinguish possible structural variations, a model quality assessment was performed before further protein model analyses and superimposition of the protein models, particularly in both the receptor-binding domain (RBD) and FLC. Mutant spike models were generated with the unique 681PRRA684 amino acid sequence found within the deleted FLC. We found 9 SARS2 FLC structural patterns that could potentially correspond to nine node clusters encompassing various countries found within the COVID-19 genomic epidemiology network. Similarly, we associated this with the rapid evolution of the SARS2 genome. Furthermore, we observed that either in the presence or absence of the unique 681PRRA684 amino acid sequence no structural changes occurred within the SARS2 RBD, which we believe would mean that the SARS2 FLC has no structural influence on SARS2 RBD and may explain why host tropism was maintained.

5.
Front Med (Lausanne) ; 7: 594439, 2020.
Article in English | MEDLINE | ID: covidwho-1069725

ABSTRACT

Coronaviruses (CoV) are enveloped positive-stranded RNA viruses and, historically, there are seven known human-infecting CoVs with varying degrees of virulence. CoV attachment to the host is the first step of viral pathogenesis and mainly relies on the spike glycoprotein located on the viral surface. Among the human-infecting CoVs, only the infection of SARS CoV 2 (SARS2) among humans resulted to a pandemic which would suggest that the protein structural conformation of SARS2 spike protein is distinct as compared to other human-infecting CoVs. Surprisingly, the possible differences and similarities in the protein structural conformation between the various human-infecting CoV spike proteins have not been fully elucidated. In this study, we utilized a computational approach to generate models and analyze the seven human-infecting CoV spike proteins, namely: HCoV 229E, HCoV OC43, HCoV NL63, HCoV HKU1, SARS CoV, MERS CoV, and SARS2. Model quality assessment of all CoV models generated, structural superimposition of the whole protein model and selected S1 domains (S1-CTD and S1-NTD), and structural comparison based on RMSD values, Tm scores, and contact mapping were all performed. We found that the structural orientation of S1-CTD is a potential structural feature associated to both the CoV phylogenetic cluster and lineage. Moreover, we observed that spike models in the same phylogenetic cluster or lineage could potentially have similar protein structure. Additionally, we established that there are potentially three distinct S1-CTD orientation (Pattern I, Pattern II, Pattern III) among the human-infecting CoVs. Furthermore, we postulate that human-infecting CoVs in the same phylogenetic cluster may have similar S1-CTD and S1-NTD structural orientation. Taken together, we propose that the SARS2 spike S1-CTD follows a Pattern III orientation which has a higher degree of similarity with SARS1 and some degree of similarity with both OC43 and HKU1 which coincidentally are in the same phylogenetic cluster and lineage, whereas, the SARS2 spike S1-NTD has some degree of similarity among human-infecting CoVs that are either in the same phylogenetic cluster or lineage.

SELECTION OF CITATIONS
SEARCH DETAIL